Data Modeling

  • 1:M – Link: Modellierung oder Business Rule?

    Auf dem 1. DDVUG Treffen hatten wir ein interessante Diskussion darüber, wo eigentlich die Datenmodellierung aufhört und Business Rules beginnen. Aufgehängt hatte sich dies an meiner Präsentation, in der es um einen Link ging, der eine 1:M (Hub A – (M) Link (1) – Hub B) Relation repräsentiert und über einen bi-temporalen Satelliten den gesteuert (end-dating) wird. So darf für jeden Eintrag im Hub B nur eine aktive Relation im Link existieren. Die Daten für das End-dating des Links kamen im von mir aufgeführten Beispiel bereits aus dem Quellsystem (Blogpost folgt bald).

  • 13 Tipps, um Ihr Data-Vault-Projekt scheitern zu lassen!

    13 Tipps, um Ihr Data-Vault-Projekt scheitern zu lassen!

    Wie Sie erfolgreich jede Ebene des Data Warehouse torpedieren


    Sie sind erfolgsverwöhnt und haben das ewige Schulterklopfen satt? Sie wollen nicht auch noch bei Ihrem ersten Versuch zur Umsetzung eines Data-Vault-Projekts so erfolgreich sein, dass alle Kollegen neidisch werden?

    Hier bekommen Sie 13 praxiserprobte Tipps, wie Sie Ihr Data-Vault-Projekt erfolgreich scheitern lassen.

  • 5th anniversary of TEDAMOH

    5th anniversary of TEDAMOH

    Dear readers of my blog,

    five years ago a long cherished idea of mine became reality. On July 1, 2017, TEDAMOH saw the light of day.

  • A comment

    In recent weeks I have read so many pessimistic and negative articles and comments in the social media about the state of data modeling in companies in Germany, but also worldwide.

    Why? I don't know. I can't understand it.

    I know many companies that invest a lot of time in data modeling because they have understood the added value. I know many companies that initially rejected data modeling as a whole, but understood its benefits through convincing and training.

    Isn't it the case that we (consultants, managers, project managers, subject-matter experts, etc.) should have a positive influence on data modeling? To support our partners in projects in such a way that data modeling becomes a success? If we ourselves do not believe that data modeling is a success, then who does?

  • An open and honest feedback on “13 tips …”

    A few weeks ago I received a surprisingly open and honest feedback on my recently published article "13 tips...". I never ever expected that! After a short email exchange, I was allowed to publish the feedback anonymously. Below is the incredible feedback[3]. You see, you are not alone with the challenges of a Data Vault project:

    Hi Dirk

    Thanks for sending me the English version of the paper. I'm based in […] [1] and Data Vault is not generally established here yet.

  • Articles

    My articles

    All articles I wrote about data warehousing, Data Vault, data modeling and more.

    Enjoy reading and your comments are welcome.

  • Blog

  • Change default value

    At FastChangeCo, the data modelers within the Data Management Center of Excellence (DMCE) team are constantly designing new database objects to store data. One of the data modelers on the team is Xuefang Kaya. When she takes a new user story/task, she usually models multiple tables, their columns, and specifies a data type for each column.

  • Customize table comments

    In several projects, FastChangeCo's data modelers on the Data Management Center of Excellence (DMCE) team had an issue with the way PowerDesigner generates comments for tables and columns for the SQL Server database. Xuefang Kaya (one of the data modelers on the team), asked about the problems, says to the DMCE team:

  • Das Ziel: ganzheitliche Gestaltung

    Das Ziel: ganzheitliche Gestaltung

    Data Vault im Einsatz beim Gutenberg Rechenzentrum

    Im Rahmen einer umfassenden Neugestaltung entsteht beim Gutenberg Rechenzentrum in Hannover eine neue Data-Warehouse-Architektur für ein Standardprodukt, das als Analyse-Komponente für die ERP-Verlagslösung des GRZ zum Einsatz kommt. Heterogene Kundenanforderungen, Customizing der ERP-Komponenten sowie ein gefoderter hoher Grad an Flexibilität und kundenindividueller Ausgestaltung spiegeln sich in einer Hub-and-Spoke-Architektur mit einem als Data Vault modellierten Core Warehouse und mehrdimensionalen Data Marts wider.

  • Data (Vault) Modeling and Deep Learning @ #XP19

    Model driven decision making

    During #XP19 you’ll be able to take part in our (Matze and myself) deep dive session about Model driven decision making: Data (Vault) Modeling and Deep Learning. It has been designed to give you a (very) short hands-on and practical guidance.

    What is this 15 minute deep dive session about at #XP19?

  • Data Model Scorecard

    Objective review and data quality goals of data models

    Did you ever ask yourself which score your data model would achieve? Could you imagine  90%, 95% or even 100% across 10 categories of objective criteria?

    No?
    Yes?

    Either way, if you answered with “no” or “yes”, recommend using something to test the quality of your data model(s). For years there have been methods to test and ensure quality in software development, like ISTQB, IEEE, RUP, ITIL, COBIT and many more. In data warehouse projects I observed test methods testing everything: loading processes (ETL), data quality, organizational processes, security, …
    But data models? Never! But why?

  • Data Modeling

  • Data Modeling (General)

    All topics around Data Modeling like

    • Conceptual
    • Logical
    • Physical (Data Vault and others)
  • Data Modeling Blogposts

  • Data Modeling Books

  • Data Modeling Zone 17

    After all, I am very happy to be a speaker at this year's Data Modeling Zone in Düsseldorf. Again, like at the Global Data Summit, I'm talking about one of my favorite topics: Temporal data in the data warehouse, especially in connection with data vault and dimensional modeling.

  • Data Modeling Zone Europe 2015

    DMZone2015Flyer

    Do you want to learn something about data modelling with Steve Hoberman? You want to explore new methods like Data Vault 2.0, Anchor Modeling, Data Design, DMBOK and many more? E.g. a keynote where Dan Linstedt, Lars Rönnbäck and Hans Hultgren talks together, and another one with Bill Inmon?

  • Data Models

  • Data Vault - Datenmodellierung noch notwendig?

    Wie bereits in meinem Blogpost Modellierung oder Business Rule beschrieben ist es notwendig sich bei der Datenmodellierung über Geschäftsobjekte, die Wertschöpfungskette, fachliche Details und die Methodik des Modellierens einige Gedanken zu machen.

    Oder doch nicht? Kann ich mit Data Vault einfach loslegen? Schließlich ist Data Vault auf den ersten Blick ganz einfach. Drei Objekte: HUBs, LINKs und SAT(elliten), einem einfachen Vorgehensmodell und ein paar wenige Regeln. Brauche ich für Data Vault noch die Datenmodellierung?